skip to main content


Search for: All records

Creators/Authors contains: "Sosnovtsev, V."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present results of several measurements of CsI[Na] scintillation response to 3–60 keV energy nuclear recoils performed by the COHERENT collaboration using tagged neutron elastic scattering experiments and an endpoint technique. Earlier results, used to estimate the coherent elastic neutrino-nucleus scattering (CEvNS) event rate for the first observation of this process achieved by COHERENT at the Spallation Neutron Source (SNS), have been reassessed. We discuss corrections for the identified systematic effects and update the respective uncertainty values. The impact of updated results on future precision tests of CEvNS is estimated. We scrutinize potential systematic effects that could affect each measurement. In particular we confirm the response of the H11934-200 Hamamatsu photomultiplier tube (PMT) used for the measurements presented in this study to be linear in the relevant signal scale region. 
    more » « less
  2. Abstract We report on the preparation of and calibration measurements with a 83 mKr source for the CENNS-10 liquid argon detector. 83 mKr atoms generated in the decay of a 83 Rb source were introduced into the detector via injection into the Ar circulation loop. Scintillation light arising from the 9.4 keV and 32.1 keV conversion electrons in the decay of 83 mKr in the detector volume were then observed. This calibration source allows the characterization of the low-energy response of the CENNS-10 detector and is applicable to other low-energy-threshold detectors. The energy resolution of the detector was measured to be 9% at the total 83 mKr decay energy of 41.5 keV. We performed an analysis to separately calibrate the detector using the two conversion electrons at 9.4 keV and 32.1 keV. 
    more » « less
  3. null (Ed.)